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Static menisci in a vertical right circular cylinder 

By PAUL CONCUS 
Lawrence Radiation Laboratory, University of California, 

Berkeley, California 94720 

(Received 20 May 1968) 

The solution of the differential equation describing the equilibrium meniscus in a 
vertical right circular cylinder is obtained over the entire range of contact angles 
and Bond numbers (dimensionless ratios of gravitational to capillary forces) for 
which a stable meniscus exists. The first few terms of the asymptotic series valid 
for Bond numbers of small and large magnitude are given, and the numerical 
solution for intermediate values is computed. The behaviour of the solution as a 
function of contact angle and Bond number is depicted graphically. 

1. Introduction 
A few years ago White & Tallmadge (1965) calculated the shape of static 

menisci on the outside of a vertical right circular cylinder for a perfectly wetting 
fluid (zero-degree contact angle). The corresponding problem for static menisci 
inside a cylinder for both zero and more general contact angles has stimulated 
interest for many years-early references date back as far as Laplace (1805). 
Rayleigh (1916) gave expressions for the asymptotic solutions for very small and 
very large cylinders, primarily for zero-degree contact angle; and Bashford & 
Adams (1883) and Runge (1895) performed some of their early work in the 
numerical solution of differential equations by calculating meniscus shapes. In 
recent years the advent of space exploration and the accompanying interest in 
low-gravity environments have revived the study of these shapes. Reynolds & 
Satterlee (1966) give additional information on the solution of the interior 
meniscus problem which includes graphs depicting stability and some of the 
geometric properties of the interfaces over a large range of parameters. Anumber 
of other authors have also studied aspects of this problem recently, and most of 
their work can be found listed in the bibliographies of Habip (1965), Lockheed 
Missiles and Space Co. (1967), and Reynolds & Satterlee (1966). 

The purpose of this paper is to complete the description of the equilibrium 
meniscus in a vertical right circular cylinder for all values of the two basic para- 
meters, the contact angle between the meniscus and the cylinder wall and the 
Bond number (a dimensionless parameter that is the ratio of gravitational to 
capillary forces). Asymptotic solutions along with their range of validity are 
derived for small and large magnitudes of the Bond number and the numerical 
solution is obtained for intermediate values. The range of validity of the asymp- 
totic solutions is found by comparison with the numerical solution, and the 

31 Fluid Mech. 34 



482 Paul Con,cus 

dependence of the solution on contact angle and Bond number is depicted 
graphically. Conditions for meniscus stability are also discussed. The attempt to 
make the results presented here complete will necessitate presentation of some 
results that overlap those presented by others elsewhere. The reader is referred 
to Reynolds & Satterlee for a discussion of the relevant background material. 

2. Mathematical description 

cross-section (figure 1)  satisfies the differential equation 
The equilibrium free surface of a liquid inside a vertical cylinder of circular 

with the boundary conditions 

df  ( r ) /d r  = 0 at r = 0 

and @(r)/dr = cot 8 at r = 1. 

The y 

a, downward 
acceleration 

FIGTTRE 1. Physical confignration. 

aiitities f ,  r ,  B and h are dimensionless, where B = paaZ/cT is t h  Bond 
number with p the liquid density, a the vertical acceleration field (positive 
downward), a the radius of the cylinder, and cr the surface tension; ar is the radial 
distance from the axis; af ( r )  is the height of the surface at  a point r ;  and 0 is the 
given contact angle between the surface and the  cylinder wall. Let the origin of 
the co-ordinate system be at  the centre of the free surface, that, is, apply the 
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additional boundary condition 
f (0) = 0; (3) 

then the unknown parameter h is twice the mean curvature of the surface at  
r = 0, or, what is the same thing, twice the curvature off ( r )  at r = 0. The para- 
meter h is related to the pressure difference across the surface by h = a(po -pL)/a,  
where po  is the pressure outside the liquid and p L  is the pressure in the liquid at  
r = 0 just below the interface. Since (1)  and ( 2 )  are invariant wit’h respect to the 
transformation f =  f + h ,  X = A-Bh, 

the height of the meniscus centre in a capillary tube above the free plane level of a 
reservoir in which the tube is immersed for B > 0 is h = uA/B. 

Observe that the solution t o  (1)) ( 2 )  and (3) for a non-wetting fluid ( in  < 0 < T )  

can be obtained directly from that for a wetting fluid (0 6 0 < in) by replacing f 
by - f ,  h by - A ,  and 0 by (T- 0). Thus it is necessary to obtain the solution only 
for a wetting fluid, which is the case considered in the remainder of the paper. For 
the case in which 0 = in,  the solution is, of course, the trivial one of the flat 
interfacef(r) = 0, for which h = 0. 

It is convenient to have (l), (2) and (3) also expressed in parametric form in 
terms of the parameter $ = tan-l(df/dr), the angle between the surface and the 
horizontal. The equations are 

where D = Bf - (sin $ ) / r  + A ,  with the boundary conditions 

f ( $ )  = r ($)  = 0 a t  $ = 0 (5) 

and r ( $ ) =  1 at $ = i n - d .  (6) 

Equation ( 1 )  can also be written in terms of the parameter $ as 

I d  d$ sin$ 
--(rsin$)-Bf-A = cos$-+---Bf-A = 0. 
r dr dr r 

The quantity cos$d$ldr is the curvature of f ( r ) ,  and (sin$)/r is the other 
principal curvature of the free surface. Notice that the denominator D in (4) is 
just the curvature off ( r ) .  

The only solutions t o  the above equations that are considered here are those 
that are stable and physically realizable. It can be shown that these solutions are 
characterized as follows for 0 < 8 <in. First, h is positive. Secondly, (a)  for 
B > 0, the curvature off ( r )  increases monotonically from its value of +A at 
r = 0 to its maximal value at  the wall, and hence f ,  r and $ also increase mono- 
tonically from the centre to the wall. There are other solutions which loop back 
on themselves one or more times between r = 0 and the wall and satisfy the 
boundary conditions (to within multiples of 2n), but these are, in general, unstable 
and not physically realizable; ( b )  for B < 0, the curvature of f ( r )  decreases 
monotonically from its value of +A at r = 0 to its minimal non-negative value at  
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the wall, and hence f ,  r and $ increase monotonically from the centre to the wall. 
For each contact angle there is a critical (negative) value of B, B,.(8), which is 
the least value of B for which such a solution is possible. For values of B less than 
B,, there are undulating solutions of (4) satisfying the boundary conditions, 
but computational results indicate that these are unstable (see $6); the solution, 
f ( r ) ,  for the critical value of B has the property that its curvature decreases to 
zero at  the wall. 

3. Asymptotic solution for small B 

formal perturbation expansion in powers of B by letting 
The asymptotic solution of (4), (5) and (6) for [BI < 1 can be obtained by a 

and 

as B approaches zero.? Substitution into (4) yields the zero-order equations 

cos $b 
d r o  - , (0 < $ < &n-O). 

sin $ !% - ~~~ ~- 

a$ - A,- (sin $)/F,' a$ - A,- (sin $)/ro 

The solution, subject to the boundary conditions ( 5 )  and (6) with subscript zero 
on the variables, is the spherical segment 

9 (0 < 3 < in--), 1 f o  = 2( 1 - cos $) /Ao  = see 8( 1 - cos $) 

ro = 2(sin$)/Ao = secOsin$ 

A, = 2 cos 8. 

This is the solution for zero Bond number (zero gravity). 

first-order quantities, 
Using the above zero-order solution, one then obtains the equations for the 

dfl /d$ = - sin $[rl csc $ -~ sec3 8( 1 - cos $) + A, see2 01, 

drl /d$ = - cos $[r,  csc $ + see3 8( 1 - cos $) + A, see2 81, (0 < $ < in - 8) .  

The solution, subject to the appropriate first-order boundary conditions, ( 5 )  
with subscript one, and, instead of (6), 

rl($) = 0 a t  $ = iz-0, 
is 

1 cosy? COSZ$b 1+ eos$ 
fl = sec38 

[ 6  2 3 Y 

1 ~ - c o s ~ $  A 
g s i n $ - - ~ ~ ~ + - ' c o s 8 s i n $  , 

3sm$ 2 

A, = - sec 0 + 8 sec38( 1 - sin3 8) .  I 
t Expanding not only f and r but also h results in a solution that is somewhat more 

convenient to use than the one Rayleigh obtained by expanding only f and r .  
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Substitution of (9) and (10) into (8) then gives the desired asymptotic solution. 
The magnitude of B up to which this solution for small IB1 remains sufficiently 
accurate is discussed in §6. 

Expressions for the surface area and volume valid for small I BI can be obtained 
by using the above solutions for f and r. The surface area, 8, of the equilibrium 
free surface is 

which for small IBI becomes 

S = 2m( 1 - sin 19) sec3 B{cos 8 - B[A, + sec I9( 1 - sin 6)/2] + O(B2)}. 

The volume, 8, of liquid between the horizontal p h e  x = 0 and the free surface 

V = n{ - hl+Bsec58[ - ($+ $Al cos 8 )  cos20+ (1 -sin8)/3 

+ ($+A,  cos 0) (1  - sin3 8)  - $ cos2 19(l +sin28) 

+ Q cos2 @log (( 1 + sin I9)/2)] + O(B2)). 

4. Asymptotic solution for large B 
Since Bcr, the critical value of B less than which a stable free surface does not 

exist, is a negative number of only moderate magnitude for all contact angles 
(see Reynolds & Satterlee, figure 11.23, p. 408), it is not necessary to consider an 
asymptotic solution for negative values of B of large magnitude. The asymptotic 
solution developed here is for large positive values of B, only. 

The asymptotic solution for B 9 1 is found by using a boundary-layer tech- 
nique. One assumes that there is a central core region covering most of the 
cylinder in which df/& = tan $ is small, and a boundary-layer region near the 
wall in which $ increases rapidly to its given boundary value. Matching the core 
and boundary-layer solutions in the transition zone between them determines the 
value of the constant, A. 

In  the core region ($'+ < I),  the solution is most easily found from (l) ,  which for 
small $ becomes 

where the subscript c denotes the core region. The solution, subject to ( 2 a )  and 

where I,, and I ,  are modified Bessel functions of order zero and one, respectively. 
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The solution in the boundary-layer region is obtained by first estimating the 
boundary-layer thickness, which is assumed to be of the order of B-m, where m 
is a positive exponent to be determined. That is, let x be the houndary-layer 
variable, where x = Bn2(1-r) 

is of order one in the boundary layer. Then substitution into (7) yields 

In order that $ = tan-l(df/dr) = - Bmtan-l(df/dx) be of order one in the 
boundary layer, it is necessary that f be of order B-".? The quantity m is de- 
termined by requiring that the dominant capillary term-the first term in (14), 
which is the one due to the curvature off (r)-and the gravitational term, the 
third term in (14), be of the same order. This yields the relationship 

Bm = Bl-m 
9 

so that the proper choice for tn is m = 4. 
One thus seeks a solution in the boundary-layer region of the form 

where e = B-4 is the expansion parameter andf,($) and ?"b($) are the solutions 
for f ($) and r ($ ) ,  respectively, in the boundary layer. The expansioii is carried 
out to e2 so that the terms up to order B-1 are included, in a sense paralleling (8), 
the expansion for small IBI , where terms up to order B are included. The appro- 
priate boundary conditions are the ones corresponding to (6), 

Xl(ll/) = x2($) = 0 at $ = in-0,  (16) 

F7($) = F,($) = 0 a t  $ = 0. (17) 

and, in addition, the ones that outside the boundary layer f b  approach zero with 
e7 

In  obtaining the solution it is assumed that h is negligible in comparison wit,h 
terms of order one, an assumption that is verified after the solution is found. 

Substituting (15) into (4) yields the first-order equations (terms of order e )  

The solution, subject to the conditions (16) and (17), is 

Fl = 2 sin $9, 
x1 = log [tan i ~ r , / t a n  i$] + 2 cos +el - 2 cos $$, 

I It, is assumed, of course, that the given contact angle 0 requires that $ be of order one 
at the boundary. If 8 is close to $71, then a boundary-layer solution is not necessary, and 
the corc solution may be used all the way to the wall. 
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where is the value of II. at the wall, 

Lkl = $7 - 8. 
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(19) 

The second-order equat’ions (terms of order e2) are 

ax2 cos$ sin$cos$ F2- - ~- 

F? T$ = x-- 
where Fl is given by (18). The solution, subject to conditions (16) and (17) ,  is 

2 1 - C O S ~ & $  
F”’3 

tan 4+1 
x2 = - 8 sin2 &$l - Q( 1 + cos $k1)-l + 6 log ____ 

tan i$ 
+ + sin2 *$ + &( 1 + cos &$)-I. 

Equations (18) and (20), when substituted into (15),  then give the desired 
boundary-layer solution. 

The value of h appearing in the core solution (12) is evaluated by matching 
the core and boundary-layer solutions in the region of transition between the 
two, that is, far enough from the wall so that $ is of order e, but close enough so 
that (1 - r )  < 1. I n  terms of the expansion pmameter e the core solution (12) in 
the transition region is 

f ,  = e2h[I,(r,/e) - 11 [ 1 +  O(e2) ] .  

In  this region r, is close to one, so that the Bessel function in the above expression 
may be approximated by its asymptotic expansion for large argument to yield 

The asymptotic expression for the boundary-layer solution in the transition 
region is found by using the forms that (18) and (20) take for small $, 

E; = k +  0(k3), 
x1 = - logi$+ log tan &kl + 2 cos +,hl - 2 + 0 ( $ 2 ) ,  

x2 = - &log $+ - # sin2 
F~ = +$+ 0 ( $ 3 ) ,  

- Q[1 + c o ~ ~ $ ~ ] - ~ + ~ l o g t a n ~ $ ~ + ~ ~ + O ( y ! ! ~ ) .  

Substituting these equations into (15) and taking y? to be the same order as e 
yields 

and 

f,,(k) = e$ + ie2k + o(e4) ( 2 2  a )  

- $( 1 + cos &$l)-l] + o(e2). (22b)  

1 - rb($) = e( 1 + i e )  ( - log $$ + log tan &hl) - 2 4  1 - cos &$J 

+ e 2 Eiz 1 - 2 -  sin2 
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Note that the remainder term in ( 2 2 b )  is evidently of the form O(e3log $), which 
for $ = O(e) is o(e2),  but larger than O(e3). I n  the transition region l-rb($) is 
O(eloge), and the error in (15b) increases to  O(e310ge) from its value of O(e3) in 
the boundary layer. 

Exponentiation of ( 2 2  b )  yields 

$ = 4exp{logtan&b-, - (1- rb(3)) /e-2(1-cosH$-, )+H[1-rb($) ]  

+ e[I3 - cos I$ - % sin2 L$ 2 1 - %( l+cosg$l)-~]+o(€)}. 1 2  2 1  

Substitution of this equation into (22a)  and simplifying yields 

fb($) = 4€{1 + ~ [ 1 - - b ( ~ ) ] + ~ [ ~ - c o s ~ $ r , - ~ s i n 2 $ $ l - ~ ( 1  +cos$Lhl)-’]+0(~)) 

x exp [ - (1 - rb($)) /e+ log tan g$l - 2( 1 - cos 

The core solution (21) may now be matched to the above boundary-layer 
solution by setting r, = rb and equating f, to fb. The result, after the relation 
[l--rb(?,h)] = O(e1ogc) has been used to expand (21) as 

f, = (2n)-ghetexp(r,/e)[l+H(l -~,)++e+o(t)] ,  

where A, = 4(2.rr)+tan*$,exp{-2[1 -COS+@J} 

and A, = $2 - cos &@l - 8 sin2 +$, - Q[ 1 + cos ( 4$l)]-1. 
Examination of (23) shows i t  to be consistent with the assumption made pre- 
viously that h is small compared with terms of order one. 

The asymptotic expressions for large B for the surface area S of the equilibrium 
free surface and the volume V of liquid between the horizontal plane z = 0 and 
the free surface are then found to be 

S = n{ 1 + 4 ~ [  1 - cos $$1] + O(e2)} 

and V = 3 m 2  sin + O(e3). 

5. Numerical solution 
The solutions for large B and for values of B near zero can be found by using 

the asymptotic expressions given in the previous sections. For intermediate values 
of B it is necessa’ry to solve numerically the boundary-value problem describing 
the free surface. This is accomplished here by using the initial-value, or shooting, 
method (see Fox 1962, pp. 63-4). Equation (4) is integrated, using (5) and a 
guessed value of A as initial conditions, until $ = $rr - 0, at which point theright- 
hand boundary condition (6) is, in general, not satisfied. The value of A is then 
adjusted, by using Newton’s method, and the process repeated until (6) is satis- 
fied to the desired accuracy. The specific equation used to correct h is 
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where A, denotes the nth approximation to A ;  the value of arph is obtained by 
simultaneously integrating the equations obtained by differentiating (4) with 
respect to A, 

A("') 
a+ ah 

along with (4), subject to the initial conditions 

The numerical integration was carried out by using ZAM, a Radiation Labora- 
tory computer library subroutine, which employs a variable-step size fourth- 
order Adams-Moulton method. To start the integration at  r = 0 ,  the presence 
of the terms involving (sin$)/r and (sin$)/rZ requires that an asymptotic 
solution be used. The asymptotic solution for small $ for B > 0 is given by (12); 
for B < 0 it is 

f = - AB-l{l- Jo[(  - B)*r]}, $ = A( - B)-kJ,[( - B)*r]. (24) 

These asymptotic solutions are used for $ up to a value of less than 0.1 degree, 
at  which point the numerical integration is begun. 

The determination of the critical Bond number and the corresponding nu- 
merical integration for f and r require special attention, since the choice of $ as 
t'he independent variable does not permit the integration to be carried out all the 
way to the wall, where the denominator D of (4) vanishes. The integration is 
accomplished by letting D be the independent variable, once it becomes small, 
and then continuing the integration of 

and 
( 2 5 )  

df sin $ 
dD - B sin $ + ( c o - s m & T )  - o] ' 

dD - Bsin ~+ (cos $/r )  [(sin $/r) - D]' 

- - ._ 

dr cos $ -- 

until D = 0. The solution is then rescaled so that r = 1 at  the right-hand end- 
point, and the shooting method correction on h determined to make $ = in= - 8 
when D = 0, rather than to make r = 1 when $ = in= - 8. 

6. Results and conclusions 
The solution properties are depicted in figures 2 to 5 ,  where f ( i n - 8 ) ,  the 

height of the free surface at  the wall, S, the area of the free surface, V ,  the volume 
of liquid between the free surface and the plane z = 0 and A, twice the mean 
curvature of the free surface at r = 0,  are displayed, respectively. The solid 
portions of the curves depict the asymptotic solutions obtained for large and 
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f l 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1  

B 

FIGURE 2. f( &TI - O), meniscus height at  the cylinder wall, vs. B, Bond number. The curves 
in order from top to bottom are for contact angles 6' = 0, 10, 20, 30, 40, 50, 60, 70 and 
80 degrees. 

B 

FIGURE 3. S ,  menisciis area, vs. B, Bond number. The curves in order from top to bottom 
are for contact angles 8 = 0, 10, 20, 30, 40, 50, 60 and 80 degrees. 
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~ 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  

' -*---e---..__ - 
c_j 

-.----___ -.-_ '.. . 

0.01 - 
-10 - 1.0 -0.1 

B 

FIGUILE 4. V ,  volume between the ineniscus and the plane z = 0, vs. B, Bond number. 
The curves in order from top to bottom are for contact angles 8 = 0, 20, 30, 40, 50, 60, 
70 and 80 degrees. 

-. 
c_I -.--- .-__---- € -*--  

10-3 t 

-10 -1 -0.1 0 
B 

FIGURE 5. A, twice the mean curvature a t  the meniscus vertex, vs. B, Bond number. The 
curves in order from top to bottom are for contact angles 0 = 0, 20, 30, 40, 50, 60 ,70 and 
80 degrees. 
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small Bond numbers, and the dashed portions depict the numerical solutions 
calculated for intermediate Bond numbers. The heavy dots show the actual 
numerical values calculated-the dashed curves are faired between them. The 
curves are plotted on a log-log scale. 

1 -5 

1 .o 

b 0.5 
I 

0 

7 B = -0.842 

0 0 5  
-0.5 

r . B =  -0.842 , 

r 

FIGURE 6. Menisci for contact angle 0 = 0 deg. The curves in order from the flatt’est to the 
most arched at  the centre are for Bond numbers B = 1000, 100, 10, 1 , O  and B,, = - 0.842. 

The accuracy of the numerical solutions was checked by observing the effect 
of varying the mesh size, varying the value of $ up to which (24) is used, and 
varying the value of D beyond which (35) is used, and by comparison with the 
closed-form solution for zero gravity. The numerical values of f ,  S, V and A ,  
from which the figures are prepared, were concluded to be accurate to at  least 
six significant digits; the values of B,, were determined to three digits. Compari- 
son of the numerical solutions with those given by the asymptotic formulas 
showed that the asymptotic solution for small B, (S), may be used for IBI ,< 0.1 
and the asymptotic solution for large B, (13) and (15). may be used for 

B = e2 3 100 

with a relative error in each case of less than 1 yo in f (in- B),  8, 1;’ or A. 
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The curves in figures 2-5 terminate at their left-hand extremities a t  the critical 
Bond number, B,,(B), for which the curvature off decreases to zero a t  the wall. 
These values of B,, are the same as those given by Reynolds & Satterlee 
(figure 11.23, p. 408) to within their accuracy for the critical value of B a t  which 

B = -2.03 
I I I 

0 

the meniscus shape ceases to provide a stable configuration of minimum energy. 
Computational evidence is thus provided that the equivalence of the critical 
value of B a t  which a stable equilibrium surface is no longer possible and that at  
which the curvature off just vanishes a t  the wall, which is the case for a two- 
dimensional channel (Concus 1963, 1964), holds for the cylinder also. 

Figures 6-8 depict the diametral cross section of the equilibrium free surface as 
a function of B for 0 = 0, 30 and 60 deg. The curves are displaced vertically so 
that they all have mean height zero and correspond to the same volume of liquid. 

The author expresses his appreciation to G. E. Crane, L. M. Perko and H. M. 
Satterlee for helpful conversations concerning this work and to R. G. Ahlstrand 
for obtaining computer plots of the data. This work was performed under 
auspices of the U.S. Atomic Energy Commission. 
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1.5 - 

1.0 - 

k . 
kA 0.5- 
i *-. 

B = -3.02 

0 
r 

0 5  1.0 

FIGURE 8. Menisci for contact angle 0 = 60 deg. The curves in ordcr from the flattest to the 
most arched at the centre are for Bond numbers B = 1000, 100, 10, 1,  0 and B,, = - 3.02. 
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